博客
关于我
dataframe.isna() vs. isnull
阅读量:344 次
发布时间:2019-03-04

本文共 652 字,大约阅读时间需要 2 分钟。

  • Detect missing values.

    Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values.

    Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na=True)

  • Detect missing values. same like upon.

  • isna vs. isnull

    In python, they are exactly the same thing, same docs and same code.

    The reason why have two methods withe different names do the same thing, because pandas’s DataFrame are based on R’s DataFrame, In R na and null are two seperate things. refer to 《》

  • References

转载地址:http://ndge.baihongyu.com/

你可能感兴趣的文章
MySQL中的IO问题分析与优化
查看>>
MySQL中的ON DUPLICATE KEY UPDATE详解与应用
查看>>
mysql中的rbs,SharePoint RBS:即使启用了RBS,内容数据库也在不断增长
查看>>
mysql中的undo log、redo log 、binlog大致概要
查看>>
Mysql中的using
查看>>
MySQL中的关键字深入比较:UNION vs UNION ALL
查看>>
MYSQL中频繁的乱码问题终极解决
查看>>
Mysql主从不同步
查看>>
mysql主从同步及清除信息
查看>>
MySQL主从复制几个重要的启动选项
查看>>
MySQL主从架构与读写分离实战
查看>>
MySQL主从篇:死磕主从复制中数据同步原理与优化
查看>>
mysql主从配置
查看>>
MySQL之2003-Can‘t connect to MySQL server on ‘localhost‘(10038)的解决办法
查看>>
MySQL之DML
查看>>
Mysql之IN 和 Exists 用法
查看>>
mysql之分组查询GROUP BY,HAVING
查看>>
mysql之分页查询
查看>>
Mysql之备份与恢复
查看>>
mysql之子查询
查看>>