博客
关于我
dataframe.isna() vs. isnull
阅读量:344 次
发布时间:2019-03-04

本文共 652 字,大约阅读时间需要 2 分钟。

  • Detect missing values.

    Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values.

    Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na=True)

  • Detect missing values. same like upon.

  • isna vs. isnull

    In python, they are exactly the same thing, same docs and same code.

    The reason why have two methods withe different names do the same thing, because pandas’s DataFrame are based on R’s DataFrame, In R na and null are two seperate things. refer to 《》

  • References

转载地址:http://ndge.baihongyu.com/

你可能感兴趣的文章
Mysql全局优化参数
查看>>
MySQL函数简介
查看>>
mysql函数遍历json数组
查看>>
MySQL函数(转发)
查看>>
mysql分区表
查看>>
MySQL分层架构与运行机制详解
查看>>
mysql分库分表中间件简书_MySQL分库分表
查看>>
MySQL分库分表会带来哪些问题?分库分表问题
查看>>
MySQL分组函数
查看>>
MySQL分组查询
查看>>
Mysql分表后同结构不同名称表之间复制数据以及Update语句只更新日期加减不更改时间
查看>>
mysql创建函数报错_mysql在创建存储函数时报错
查看>>
mysql加强(5)~DML 增删改操作和 DQL 查询操作
查看>>
MySQL基础day07_mysql集群实例-MySQL 5.6
查看>>
Mysql基础命令 —— 系统操作命令
查看>>
MySQL基础学习总结
查看>>
mysql基础教程三 —常见函数
查看>>
mysql基础教程二
查看>>
mysql基础教程四 --连接查询
查看>>
MySQL基础知识:创建MySQL数据库和表
查看>>