博客
关于我
dataframe.isna() vs. isnull
阅读量:344 次
发布时间:2019-03-04

本文共 652 字,大约阅读时间需要 2 分钟。

  • Detect missing values.

    Return a boolean same-sized object indicating if the values are NA. NA values, such as None or numpy.NaN, gets mapped to True values. Everything else gets mapped to False values.

    Characters such as empty strings '' or numpy.inf are not considered NA values (unless you set pandas.options.mode.use_inf_as_na=True)

  • Detect missing values. same like upon.

  • isna vs. isnull

    In python, they are exactly the same thing, same docs and same code.

    The reason why have two methods withe different names do the same thing, because pandas’s DataFrame are based on R’s DataFrame, In R na and null are two seperate things. refer to 《》

  • References

转载地址:http://ndge.baihongyu.com/

你可能感兴趣的文章
Mysql存储引擎(2):存储引擎特点
查看>>
MySQL存储引擎--MyISAM与InnoDB区别
查看>>
mysql存储总结
查看>>
mysql存储登录_php调用mysql存储过程会员登录验证实例分析
查看>>
MySql存储过程中limit传参
查看>>
MySQL存储过程入门
查看>>
mysql存储过程批量建表
查看>>
MySQL存储过程的使用实现数据快速插入
查看>>
mysql存储过程详解
查看>>
Mysql存表情符号发生错误
查看>>
MySQL学习-group by和having
查看>>
MySQL学习-MySQL数据库事务
查看>>
MySQL学习-MySQL条件查询
查看>>
MySQL学习-SQL语句的分类与MySQL简单查询
查看>>
MySQL学习-子查询及limit分页
查看>>
MySQL学习-排序与分组函数
查看>>
MySQL学习-连接查询
查看>>
Mysql学习总结(10)——MySql触发器使用讲解
查看>>
Mysql学习总结(11)——MySql存储过程与函数
查看>>
Mysql学习总结(12)——21分钟Mysql入门教程
查看>>